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Abstract

Researchers and security vendors have proposed detection systems leveraging ma-
chine learning. However, these systems potentially have a vulnerability; they
poorly detect malicious data created with newly developed attack tools (unknown
families). If features of unknown families significantly differ from those of known
families, detecting unknown families is extremely difficult. We focus on the ten-
dency that some features are inherent across different families because attackers
have to use such features to exploit vulnerabilities or reduce the cost of attacks.
Based on this insight, we propose a method, i.e., a neural network, that classifies
based on an invariant representation in similar known families for improving in the
detection of unknown families. The family-invariant representation is learned with
adversarial training: an optimization method used in domain adaptation methods.
Specifically, we calculate the prediction probabilities of families using a conven-
tional neural network and optimize the representation to confuse families whose
predicted probabilities are similar. We applied our proposed method to a malicious
communication-sequence detection system. Our method outperformed a conven-
tional neural network in terms of the true positive rates of unknown families by at
most 19%.

1 Introduction

Attackers automatically create malicious data with attack tools to efficiently accomplish their mali-
cious objectives. For example, they create malware samples with toolkits [1] and malicious websites
with exploit kits [2]. To detect malicious data and prevent damage caused by them, researchers and
security vendors have proposed detection systems leveraging machine learning [3, 4, 5]. These
systems effectively detect new malicious data on the basis of similarities with training data: previ-
ously collected malicious and benign data. However, these systems potentially have a vulnerability.
Specifically, they poorly detect malicious data created with newly developed attack tools (unknown
families) [6]. Since attackers develop new attack tools to evade detection systems, unknown fami-
lies have different features from malicious data created with known attack tools (known families).
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Figure 1: Neural network architecture of our proposed method.

Therefore, unknown families are difficult to detect with conventional detection systems, with which
training and test data are assumed drawn from the same distribution.

If features of unknown families significantly differ from those of known families, detecting unknown
families is extremely difficult. However, some features are inherent across different families because
attackers have to use such features to exploit vulnerabilities or reduce the cost of attacks. For ex-
ample, in drive-by download attacks, applications exploiting browsers or their plugins are limited
to Flash, PDF, and Java, and abused domains are frequently acquired from loosely operated regis-
trars [7]. Based on this insight, features inherent across known families are effective in improving
the detection of unknown families. We should also be aware that effective features are not always
inherent across all known families. For example, some families abuse Flash to exploit a vulnerabil-
ity of a browser, but some families abuse PDF. Therefore, we use features inherent across similar
families to improve detection performance.

We propose a method, i.e., a neural network, that classifies based on an invariant representation in
similar known families for improving in the detection of unknown families. The family-invariant
representation is learned with adversarial training: an optimization method used in domain adapta-
tion methods [8, 9]. Conventional domain adaptation methods optimize representations to equally
confuse source and target domains. With our proposed method, we prioritize similar known fami-
lies in representation learning. Specifically, we calculate prediction probabilities of families using
a conventional neural network and optimize a representation to confuse families whose predicted
probabilities are similar. We applied our proposed method to a malicious communication-sequence
detection system and evaluated the method’s detection of unknown families.

2 Proposed Method

Our proposed method uses dataset X = {(xi,yi, zi)}Ni=1 for training, where xi is an input datum,
yi ∈ R2 is a class label, i.e., benign or malicious, and zi ∈ RNz is a family label. A benign class
label is denoted as yi = [1, 0], and a malicious one is denoted as yi = [0, 1]. The family labels are
attached only to malicious data, and Nz denotes the number of families. We use a neural network
having two heads, as shown in Fig. 1. The shared network Fs(x;θs) calculates representation h,
one head Fc(h;θc) predicts a class label y, and the other head Ff (h;θf ) predicts a family label z,
where θ denotes the parameters of neural networks. We use ŷ and ẑ for a predicted class and family
label, respectively.

Optimization. In the training phase, we consider three loss functions and optimize them using ad-
versarial training. The first loss function is used to calculate classification loss and defined using the
cross entropy Lc = −

∑N
i=1

∑2
j=1 yij log ŷij . The second loss function is used to calculate family

prediction loss and defined using the cross entropy Lf = −
∑N

i=1(1l[yi2 = 1]
∑Nz

j=1 zij log ẑij).
The third loss function is used to calculate family confusion loss Lconf . We define this in the next
subsection. We iteratively optimize the parameters of neural networks on the basis of the following
two objectives:

min
θs,θc

Lc + αLconf (1)

2



min
θf

Lf , (2)

where α is a hyper parameter that controls the effect of the family confusion loss.

Family Confusion Loss. We define the family confusion loss to prioritize confusion between sim-
ilar families. To identify similar families, we use the prediction probabilities of families when we
minimize Lc and Lf . The prediction probability pij denotes a probability of family j when xi is
input. Before calculating the family confusion loss, we smooth pij by adding a constant a ∈ R:
p′ij =

pij+a∑Nz
k=1(pik+a)

, where p′ij is the smoothed prediction probability. The family confusion loss is

defined as follows:

Lconf = −
N∑
i=1

(1l[yi2 = 1]

Nz∑
j=1

p′ij log ẑij). (3)

Since p′ is a distribution between p and a uniform distribution, and similar families have similar p,
the representation is optimized to confuse more similar families than dissimilar ones. Therefore, we
can obtain invariant representations in similar known families by minimizing Lconf .

3 Evaluation

We apply our proposed method to a malicious communication-sequence detection system and eval-
uate the method’s detection of unknown families. We describe the experimental setup in Section 3.1
and experimental results in Section 3.2.

3.1 Experimental Setup

Conventional Methods. We compare our proposed method with two conventional methods. One is
a conventional neural network (baseline). It has the same neural network architecture as our method
and optimized by minimizing Lc. The other is a method for learning invariant representations in
all known families without taking into account the similarities between families (equal confusion).
With this method, the family confusion loss is defined using the cross entropy between a predicted
family label and uniform distribution: Lconf = −

∑N
i=1(1l[yi1 = 1]

∑Nz

j=1
1
Nz

log ẑij).

Datasets. We use malicious and benign proxy logs for our evaluation. From these proxy logs,
we extract sequences of communications whose source IP addresses and destination fully qualified
domain names (FQDNs) are the same and extract feature vectors regarding their URLs and content-
types (see Appendix A for details). The total number of benign feature vectors is 110,000 and
that of malicious feature vectors is 856. The malicious data include four families: Rig, Neutrino,
Magnitude, and Sundown. We conduct our evaluation using four datasets, each containing test data
of one of the four families and training data of the other three families. In other words, a family in
the test data is not included in the corresponding training data. Using these four datasets, we conduct
the evaluation assuming a family in the test data is unknown. More detailed information on these
datasets is provided in Appendix B.

Hyperparameter Optimization. We optimize the hyperparameters by a cross-validation using the
training data. For the cross-validation, we prepare three different datasets, each containing validation
data of one of three families and training data of the other two families. The benign data is randomly
split into halves for training and validation. We select the best hyperparameters in terms of a partial
area under a receiver operating characteristic (ROC) curve (pAUC) in a region of false positive rates
(FPRs) from 0 to a threshold. Since detection systems for cyber security commonly maintain their
FPRs to less than 0.1, we selected 0.1 as the FPR threshold when we calculate a pAUC.

3.2 Experimental Results

We compare the three methods’ detection of unknown families using ROC curves, as shown in
Fig. 2. When Neutrino was assumed to be unknown, all methods achieved high detection perfor-
mance. When the others were assumed to be unknown, our method outperformed the conventional
ones. In the best-case scenario, our method achieved a 19% higher true positive rate (TPR) than
the baseline at 3.2% FPR when Magnitude was assumed to be unknown. Unlike our method, the
equal confusion did not outperform the baseline. The representation of the equal confusion was
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Figure 2: ROC curves. Families assumed to be unknown are (a) Rig, (b) Neutrino, (c) Magnitude,
and (d) Sundown.

inferred not to include effective features because the representation was optimized to confuse not
only similar families but also dissimilar families.

4 Discussion

Applicability of Proposed Method. In this evaluation, we applied our method to a malicious
communication-sequence detection system, but our method can be applied to other systems. If mali-
cious data are produced with attack tools, our method’s detection of such data is expected to improve.
Since most malicious data related to cyber security are produced in this manner, our method can be
applied to detection systems for malicious Android applications [3] or malicious websites [5].

Validity of Evaluation. We used one of the four families as test data assuming that it is an un-
known family. However, we should ideally evaluate the detection of malicious data produced by
newly developed attack tools. In our evaluation, we showed that our method improved in detection
performance or achieved sufficiently high detection performance if any family was assumed to be
unknown. Therefore, our method is expected to improve in the detection of malicious data produced
by newly developed attack tools.

5 Related Work

Detection Systems with Machine Learning. Systems for detecting malicious data, such as mali-
cious Android applications [3], vulnerable firmware images of IoT devices [4], and malicious web-
sites [5], have been proposed by applying machine learning. These systems are focused on detecting
data similar to malicious training data but not unknown families. A method has been proposed for
extracting invariant feature vectors with respect to changes in malicious data [10]. This method
requires a hypothesis of change in malicious data, but we cannot predict the features of unknown
families.

Adversarial Training. Adversarial training is used for learning domain-invariant representations in
domain adaptation [8, 9]．In these studies, unlabeled data of a target domain were used for training,
but we could not obtain unknown families in the training phase. Furthermore, domain adaptation
methods optimize representations to equally confuse source and target domains, but we prioritize
similar known families.

6 Conclusion

We have proposed a method, i.e., a neural network, that classifies based on an invariant represen-
tation in similar known families for improving in the detection of unknown families. The family-
invariant representation is learned with adversarial training: an optimization method used in domain
adaptation methods. Specifically, we calculate the prediction probabilities of families using a con-
ventional neural network and optimize the representation to confuse families whose predicted prob-
abilities are similar. We have applied our proposed method to a malicious communication-sequence
detection system and showed that our method outperformed a conventional neural network in terms
of the TPRs of unknown families by at most 19%.
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A Malicious Communication-Sequence Detection System

A malicious communication-sequence detection system accepts proxy logs as input and detects se-
quences of communications to malicious websites, which are built with exploit kits and abused
for drive-by download attacks. Proxy logs are collected by recording HTTP requests when hosts
access the Internet. The logs include timestamps, source IP addresses, destination URLs, HTTP
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Figure 3: Malicious communication sequence detection system

methods, and HTTP headers. Since a victim’s host typically sends multiple HTTP requests to the
same malicious website, higher detection performance can be achieved using feature vectors rep-
resenting a sequence of HTTP requests compared to using feature vectors representing a HTTP
request [11]. Furthermore, since a host typically sends multiple HTTP requests to the same benign
website, classification becomes easier by taking into account multiple HTTP requests to the same
website. Therefore, we extract sequences of communications whose source IP addresses and desti-
nation FQDNs are the same. Note that we identify HTTP requests to the same website on the basis
of their FQDNs because HTTP requests to the same domain are not necessarily related to the same
websites if they are built on a hosting service.

Figure 3 shows the overview of this system. In the training phase, sequences are extracted from
proxy logs whose class and family labels are known. After that, feature vectors are extracted from
the sequences and used for building a classifier. In the test phase, sequences are extracted from
proxy logs whose labels are not known. Feature vectors are then extracted from the sequences
and classified as benign or malicious with the classifier. We describe sequence extraction, feature
extraction, and classification below.

Sequence Extraction. We extract sequences of communications whose source IP addresses and
destination FQDNs are the same from proxy logs. Furthermore, we split sequences if the elapsed
time from the first communications becomes two minutes or the number of communications be-
comes 100. When a sequence is split, we start to extract a new sequence.

Feature Extraction. We design features referring to conventional systems for detecting drive-by
download attacks [5, 7], as shown in Table 1. We extract feature vectors representing a communi-
cation then integrate vectors related to a sequence. Finally, we obtain feature vectors representing
sequences of communications.

Features representing a communication are divided into two types: general and URL. General fea-
tures are the interval, existence of identical communications, and combination of HTTP method
and content-type. URL features are the presence of IP address in hostname, presence of subdo-
main, popularity of top level domain (TLD), length of FQDN/URL path/filename/query string/URL,
depth of URL path, presence of binary file, filename extension (.php or .html), filename extension
(.js), filename extension (.pdf or .swf), number of query parameters, and ratios of capital let-
ters/small letters/numerical letters/symbols. HTTP methods are categorized into GET, POST, and
others. Content-types are categorized into text, application, binary, image, video, audio, font, mul-
tipart, and others. The number of HTTP-method and content-type combinations is 27. We use the
highest Alexa2 rank among domains with a certain TLD as the popularity of that TLD.

We integrate the above features with different procedures depending on the data formats. For contin-
uous features, we calculate their average and standard deviation. For binary features, we calculate
their summation and average. For the category feature, we use their 1-grams and 2-grams. The
dimension of an integrated feature vector is 793. The feature vectors are normalized before they are
input into the classifier so that the average and standard deviation of each feature become 0 and 1,
respectively.

2https://www.alexa.com/topsites

6



Table 1: Features representing a communication.

　

Type No. Feature Format
1 Interval Continuous

General 2 Existence of the identical communication Binary
3 HTTP method and content-type Category
4 Presence of IP address in hostname Binary
5 Presence of subdomain Binary
6 Popularity of TLD Continuous
7 Length of FQDN Continuous
8 Length of URL path Continuous
9 Length of filename Continuous

10 Length of query string Continuous
11 Length of URL Continuous

URL 12 Depth of URL path Continuous
13 Presence of binary file Binary
14 Filename extension (.php or .html) Binary
15 Filename extension (.js) Binary
16 Filename extension (.pdf or .swf) Binary
17 Number of query parameters Continuous
18 Ratio of capital letters in query string Continuous
19 Ratio of small letters in query string Continuous
20 Ratio of numerical letters in query string Continuous
21 Ratio of symbols in query string Continuous

Table 2: Dataset.
　

Training Test
Label Family Period Number Period Number

Benign Oct. 10, 2017 10,000 Jan. 16, 2018 100,000
Rig May 7, 2015–Nov. 5, 2016 270 Nov. 7, 2016–Oct. 25, 2017 270

Malicious Neutrino Jun. 19, 2013–Jul. 12, 2016 97 Jul. 13, 2016–Sep. 26 2016 97
Magnitude Jan. 15, 2014–May 28, 2015 41 May 28, 2015–Aug. 5, 2017 42
Sundown Dec. 27, 2015–Dec. 29, 2016 19 Dec. 29, 2016–May 7, 2017 20

Classification. We describe the detailed implementation of a neural network. As Fs, Fc, and Ff ,
we use multi-layer neural networks, each consisting of input, output, and one hidden layer. All
layers are fully connected. The activation functions for the last layers of Fc and Ff are softmax, and
those for all other layers are ReLU. We apply dropout [12] to Fc to prevent overfitting and select
adam [13] as the optimizer.

B Datasets

We use malicious and benign proxy logs for our evaluation. Malicious proxy logs are prepared using
pcaps collected from Malware Traffic analysis3 and Broad analysis4. Malicious data include four
families: Rig, Neutrino, Magnitude, and Sundown. Benign proxy logs are collected from company
networks with users’ consent. All information identifying users or companies is not recorded to
protect privacy.

From these proxy logs, we extract sequences of logs whose source IP addresses and destination
FQDNs are the same and extract feature vectors, as described above. Malicious data are divided
into halves on the basis of the collection date. The former half is used for training and the latter for
testing. Benign training data were collected on Oct. 10, 2017, and benign test data were collected
on Jan. 16, 2018. The total number of feature vectors was 110,856. Table 2 shows the number and
period of benign feature vectors and each family.

3https://www.malware-traffic-analysis.net/
4http://www.broadanalysis.com/
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Table 3: Examples of benign and malicious communications
　

Label Family URL Content-type
Benign www.ntt.co.jp/news2018/1807/180718a.html html

Rig [snipped].northwestfloridacannabis.org x-shockwave-flash
/?ct=kulture&oq=X96cpLOFRaAG[snipped]

Neutrino [snipped].morgansdecorators.com x-shockwave-flash
Malicious /street/[snipped]Y3B5eA.swf

Magnitude [snipped].dropsfry.gdn x-shockwave-flash
/d9947c8e03e9dc40167c02718275b280?[snipped]

Sundown [snipped].hse.mobi x-shockwave-flash
/7/?947545190441&id=2[snipped]

We prepare four datasets, each containing test data of one of four families and training data of the
other three families. In other words, a family of the test data is not included in the corresponding
training data. Using these datasets, we conduct the evaluation assuming a family of the test data is
unknown. For example, if we assume that Rig is an unknown family, we use all training data except
for Rig to build a classifier and use benign and Rig test data to evaluate the detection performance
of that classifier.

Table 3 shows examples of benign and malicious communications. Among malicious data, the
structure of URLs differs depending on their families. For example, the URLs of Rig, Magnitude,
and Sundown have query strings, but the URL of Neutrino do not. The length of domains and
depth of URL paths also differ. On the other hand, some features are inherent across all families.
Communications of all families have the same identifier of the content-type and include random
strings.
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