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Abstract

This paper addresses the problem of evaluating learning systems in safety crit-
ical domains such as autonomous driving, where failures can have catastrophic
consequences. We focus on two problems: searching for scenarios when learned
agents fail and assessing their probability of failure. The standard method for
agent evaluation in reinforcement learning, Vanilla Monte Carlo, can severely
underestimate agent failure probabilities, leading to the deployment of unsafe
agents. In our experiments, we observe this even after allocating equal compute
to training and evaluation. To address this shortcoming, we draw upon the rare
event probability estimation literature and propose an adversarial evaluation ap-
proach. Our approach focuses evaluation on difficult scenarios that are selected
adversarially. The key challenge is in identifying these adversarial situations –
since failures are rare there is little signal to drive optimization. To solve this we
propose a continuation approach that learns failure modes in related but less robust
agents. We demonstrate the efficacy of adversarial evaluation on two standard RL
domains (humanoid control and simulated driving). Experimental results show
that our methods can find catastrophic failures and estimate failures rates of agents
multiple orders of magnitude faster (hours instead of days) than standard evaluation
schemes.

1 Introduction

How can we ensure machine learning systems do not make catastrophic mistakes? While machine
learning systems have shown impressive results across a variety of domains, they may also fail badly
on particular inputs, often in unexpected ways (Szegedy et al., 2013). As we start deploying these
systems, it is important that we can reliably evaluate the risk of failure. This is particularly important
for safety critical domains like autonomous driving where the negative consequences of a single
mistake can overwhelm the positive benefits accrued during typical operation of the system.

Limitations of random testing. In typical RL formulations, the rewards and penalties are tightly
bounded. For example an agent might get a reward of +1 for good behavior, and -1 for bad behavior.
In such cases, evaluating an agent is easy – we run the agent for a small number of episodes and output
the empirical mean reward. However, in safety critical environments, the penalty for failing can be
much higher than the reward for success. For concreteness, consider a self-driving car company that
decides the cost of an accident outweighs the benefit of 100 million miles of safe driving. A car with
failure probability greater than 1e-8 has negative expected return – it would be better to not deploy
such a car. However, to achieve reasonable confidence that the car crashes with probability below
1e–8, we need to test-drive the car for at least 1e8 miles, which may be prohibitively expensive.
∗Equal Contribution
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Our Contributions. To overcome the above-mentioned problem, we develop an adversarial evalua-
tion approach. The overarching idea is to screen out situations that are unlikely to be problematic, and
focus evaluation on difficult situations. The challenge arises in identifying these situations – since
failures are rare, there is little signal to drive optimization. To address this problem, we introduce a
continuation approach to learning an adversarial value function (AVF), which estimates the probabil-
ity the agent fails given some initial conditions. The idea is to leverage data from less robust agents,
which fail more frequently, to provide a stronger learning signal. In our implementation, this also
allows the algorithm to reuse data gathered for training the agent, saving time during evaluation.

We look at two settings where the AVF can be used. In the simplest setting, failure search, the
problem is to efficiently find initial conditions that cause failures. This could be used to identify
and debug potentially unsafe policies. Additionally, efficient adversaries can be used for adversarial
training, by folding the states causing failures back into the training algorithm (Madry et al., 2017).
The second setting, risk estimation, is the problem of efficiently estimating the failure probability of
an agent, which also has a simple application to efficiently selecting the most reliable agent from
a finite set (section 4.3). Empirically, we demonstrate large improvements in efficiency through
adversarial testing on two domains, simulated driving and humanoid locomotion.

We hope our work emphasizes the importance of moving beyond the traditional RL setting where
rewards and penalties are tightly bounded. If we want to deploy RL systems in the wild we need to
pay careful attention to catastrophic failures, which, as our experiments show, can reveal flaws in
agents we might otherwise think are safe. Additionally, we hope to motivate simulated reinforcement
learning environments as a valuable testbed for researchers interested in adversarial examples. In
traditional adversarial examples, moving beyond norm ball specification has been difficult, because
human evaluation may be necessary to determine ground truth labels (see Brown et al. (2018); Song
et al. (2018)). RL could be a valuable testbed, since ground truth is provided by the simulator. Unlike
previous work on adversarial examples in RL (Huang et al., 2017; Lin et al., 2017), our method also
works when adversaries generate inputs within the distribution on which the agent is trained.

2 Problem Formulation

Recall that we are interested in reliability assessment of a trained agent. We assume that the reliability
assessment procedure can run an episode with the trained agent given some initial condition x ∈ X ,
the outcome of which is a random failure indicator C = c(x, Z) where Z ∼ PZ for some probability
distribution PZ over some set Z and where c : X × Z → {0, 1}. C is binary and C = 1 indicates a
“catastrophic failure”. Z collects all sources of randomness due to the agent and the environment, but
is neither observed, nor controllable by the evaluator. We are interested in the agent’s performance
on the environment distribution over initial conditions X ∼ PX , which we assume can be sampled
quickly. Evaluating c requires performing an environment rollout or running the agent in the real-
world so we assume that evaluating c on the pair (x, Z) is costly. We focus on two related problems:

Failure Search: The objective of failure search is to find a catastrophic failure of the agent as quickly
as possible. Algorithms that search for failures, which we will call adversaries, can specify initial
conditions x, observe the outcome C of running the agent on x and return as soon as C = 1.

Risk Estimation: The failure probability of the trained agent is p = E[c(X,Z)], where X ∼ PX
and Z ∼ PZ independently. We say an estimate P̂ is a ρ-approximation of p if it belongs to the
interval [p/ρ, pρ]. The objective is to produce a ρ-approximation as quickly as possible.

3 Approach

Our proposed solutions use historical data to estimate the adversarial value function (AVF) f∗ : X →
[0, 1] that returns the probability of failure given an initial condition.

f∗(x) = P(c(x, Z) = 1), x ∈ X ,
where Z ∼ PZ . We learn f , an approximation to f∗. f will be chosen so that the cost of evaluating
f is negligible compared to running an episode. The high level idea is to use f to save on the cost of
experimentation. We describe how we use f , and then discuss our approach to learning f .

Failure Search: If we had access to f = f∗, we would simply optimize over f . To compensate for
the mismatch between f and f∗ we use a simple procedure to choose a diverse set of samples. We
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Domain AVF Cost VMC Cost PR Cost Acceleration Factor

Driving 3/5/11 200/1000/2700 NA 65/198/250
Humanoid 19/33/56 60K/110K/180K 9K/10K/220K 2100/3100/3800

Table 1: Failure search. We compare the number of episodes each adversary took to find an
adversarial problem instance. Each column reports the min, median, and max over evaluations of
5 separate agents. In the median case, the AVF adversary finds adversarial inputs with 198x fewer
episodes than random testing on Driving and 3100x fewer on Humanoid (Acceleration Factor).

sample n initial conditions from PX , pick the initial condition x from this set where f is the largest,
and run an experiment from x. We repeat this process with new sampled initial conditions until we
find a catastrophic failure. The pseudocode is included in Appendix A.

Risk Estimation: We use importance sampling (e.g. Bucklew 2004) with a learned proposal distri-
bution. Intuitively, we focus our evaluation efforts on more difficult scenarios – if initial condition
x is more likely to lead to failure we pick x with higher probability. Since we do not have access
to the density pX(x) on initial conditions, we use rejection sampling to sample from the proposal
distribution. We can then use importance sampling correction terms to ensure our estimates are
unbiased. If we had access to f = f∗, we show (in appendix B) that the variance minimizing
proposal distribution3 is to sample from qf (x) ∝ f1/2(x)pX(x). Since f 6= f∗, we sample from
qf (x) ∝ fα(x)pX(x), where α is tunable. We provide more details and pseudocode in appendix B.

Learning the AVF: One approach to learning f is to run the trained agent on many initial conditions
x, and observe whether it failed or not. We can then estimate f , which given an x predicts the
probability of failure, using a neural network. This is similar to running one step of the cross entropy
method. The issue with this is we get no optimization signal since the trained agent fails very rarely.
For example, our final Humanoid agent fails once every 150k episodes after we train it for 300k
episodes. The key to our continuation approach is to learn f from a family of related agents that fail
more frequently. In our instantiation of the idea, we learn f from agents that were previously seen
during training, thereby also reusing training data. Since the agent changes during training, we give f
the time-step of the agent as an additional input. We give model architecture details in appendix D.1.

4 Experiments

We run experiments on two standard RL domains. In the Driving domain, the agent controls a car
in the TORCS simulator (Wymann et al., 2000). Initial conditions are defined by the shape of the
track. A failure is any collision with a wall. We use an on-policy actor-critic agent as in Espeholt
et al. (2018). In the Humanoid domain, the agent controls a 21-DoF humanoid body in the MuJoCo
simulator (Todorov et al., 2012; Tassa et al., 2018). The initial condition of an experiment is defined
by a standing joint configuration, which is sampled from a fixed distribution. A failure is a state
where the humanoid has fallen. We use a D4PG agent (Barth-Maron et al., 2018). See appendix C for
more details on our agents and environments and appendix D for more details on our experiments.

4.1 Failure Search

We compare our AVF adversary with two baselines on the number of episodes required to find an
initial condition that leads to a failure. The baselines evaluated are 1. the naive VMC adversary
which evaluates the agent on initial conditions supplied by the environment until observing a failure,
2. a prioritized replay (PR) adversary that evaluates the agent on initial conditions which led to
failures during training, most recent first. Additional details and ablation studies on all adversaries
are provided in appendix D. The results are summarized in table 1.

The AVF adversary is multiple orders of magnitude more efficient than the VMC adversary. On the
Humanoid domain, the VMC adversary required 77 hours to find a single failure, compared to 6

3Our optimal proposal distribution differs from the standard optimal form in the rare event estimation
literature because our environments have unobserved stochasticity given by z.
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Figure 1: The figure shows the reliability of the AVF and VMC estimators. The x axis shows the
number of evaluation episodes, while the y axis shows the probability that P̂ does not belong to the
interval (p/3, 3p). This probability is obtained by repeating the evaluation multiple times and plotting
the fraction of these runs when the estimate is outside of the target interval. The AVF estimator
reliably approaches ground truth dramatically faster than the VMC estimator. We show error bars of
2 standard errors, which are difficult to see on the Driving domain.

minutes for the AVF adversary, amounting to a 61-fold speedup after including AVF training time of
70 minutes. Note that for the VMC adversary to have over a 95% chance of detecting even a single
failure, we would require over 300, 000 episodes, exceeding the cost of training, which used less than
300, 000 episodes. In practice, evaluation is often run for much less time than training, so the naive
approach would often lead to the mistaken impression that such failure modes do not exist.

We also compared our method against a stronger baseline, the PR adversary. The PR adversary
focuses evaluation on more difficult situations – initial conditions that led to failure during training.
One limitation is that the PR adversary may never detect failures, even if they exist. In particular,
the agent may have learned to handle all training problem instances, without eliminating all possible
failures. This occurred in one out of five runs of Humanoid and all runs of Driving. Even in the
median case for Humanoid, our AVF adversary needed 300x fewer episodes than the PR adversary.

4.2 Risk Estimation

We compare our AVF estimator to the standard VMC estimator for risk estimation. For each estimator
we report the fraction of runs when the obtained estimates fail to fall in the (p/3, 3p) interval, where
p is the failure probability to be estimated. This provides a fairly accurate estimate of the probability
of P̂ failing to be a ρ = 3-approximation of p. Results are summarized in fig. 1. In appendix D.3 we
include plots for other choices of ρ, to show that the results are not very sensitive to ρ.

On Driving, the AVF estimator needs only 750 episodes to achieve a 3-approximation with 95%
confidence, while the VMC estimator needs 11, 000 episodes. Similarly, on the Humanoid domain,
the AVF estimator requires 15, 000 episodes to achieve a 3-approximation with 95% confidence,
while the VMC estimator requires 5.1e5 episodes, a 34-fold improvement.

4.3 Model Selection

The improved efficiency of the AVF estimator has many benefits. One application is to identify the
most reliable agent from a finite set. For this illustration, we consider 50 Humanoid agents spaced
evenly over the course of training. The goal is to identify the most reliable agent among these. One
approach is to estimate the failure probability of each of the 50 agents using a fixed amount of
compute for each agent4. Then we can select the agent with the lowest estimated failure rate. We
could estimate failure rates with either the VMC estimator or the AVF estimator. In the median case,
over 5 runs, the VMC based method finds an agent that fails once every 30k episodes, while the AVF
based method finds an agent that fails once every 100k episodes. Further, all 5 runs of the AVF based
method found more robust agents than all 5 runs of the VMC based method. See Appendix D.4 for
more details. Note that the last agent during training failed once every 50k episodes.

4This is a crude approach to a bandit problem, but is what people often do when plotting evaluation curves.
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5 Conclusion and Future Work

In this work, we argued that standard approaches to evaluating RL agents are highly inefficient in
detecting rare, catastrophic failures, which can create a false sense of safety. We believe the approach
and results here strongly demonstrate that adversarial testing can play an important role in assessing
and improving agents, but are only scratching the surface. We hope that future work on adversarial
examples goes beyond norm ball perturbations, and we believe RL or other simulated domains can be
useful to this end. We also believe that it is important to move beyond tightly bounded rewards and
penalties in RL, and also focus avoiding catastrophic failures. We hope this work lays the groundwork
for future research into evaluating and developing robust, deployable agents.
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A Pseudocode for AVF Adversary

Algorithm 1 AVF-guided Search (AVF adversary)

Input: Sample size n
repeat

Collect random initial conditions S = {X1, . . . , Xn} where Xi ∼ PX , i ∈ [n]
Select X = argmaxx∈Sf(x)
Run an experiment to generate outcome C = c(X,Z)

until C = 1

B Detailed Explanation of Risk Estimation Approach

Our failure probability estimation method uses importance sampling (IS) (e.g., Section 4.2, Bucklew
2004) where the distribution PX is replaced by a proposal distribution Q. For t ∈ [n], the proposal
distribution is used to generate random initial condition Xt ∼ Q, then an experiment is performed to
generate Ct = c(Xt, Zt). The failure probability p is estimated using the sample mean

P̂ =
1

n

n∑
t=1

Wt c(Xt, Zt) ,

where Wt =
pX(Xt)
q(Xt)

is the importance weight of the t-th sample. Here, pX denotes the density of
PX and q denotes the density of Q.5 Let Ut =Wtc(Xt, Zt). As is well-known, under the condition
that pX(x)f∗(x) = 0 whenever q(x) = 0, we have that E[Ut] = p, and hence E[P̂ ] = p. Given that
P̂ is unbiased for any proposal distribution, one natural objective is to choose a proposal distribution
which minimizes the variance of the estimator P̂ .
Proposition B.1. For f : X → [0, 1] such that PX(f1/2) :=

∫
f1/2(x′)PX(dx′) > 0 let Qf be

defined as the distribution over X whose density qf is

qf (x) =
f1/2(x)pX(x)

PX(f1/2)
.

Then, the variance minimizing proposal distribution Q∗ is Qf∗ .

Proof. Since U1, . . . , Un are independent and identically distributed, Var[P̂ ] = Var[Ut]/n for any
t ∈ [n]. Hence, the variance of P̂ is minimized when the variance of Ut is minimized. Since
E[Ut] = p, this variance is minimized when E[U2

t ] = E[W 2
t c(Xt, Zt)] = E[(Wtf

1/2
∗ (Xt))

2] is
minimized, where we used the definition of f∗ and that c is binary-valued. However, this is nothing
but the second moment of the importance sampling estimator that uses the proposal distribution Q to
estimate

∫
PX(dx)f

1/2
∗ (x). Using Cauchy-Schwarz for integrals, this is minimized by the proposal

distribution whose density with respect to PX is proportional to f1/2∗ , leading to the desired claim.
Note that from the definition ofQf it follows that pX(x)

qf (x)
= f−1/2(x)PX(f1/2) when qf (x) > 0.

The above result motivates us to suggest using the distribution Qf as the proposal distribution of an
IS estimator. Note that the choice of f (as long as it is bounded away from zero) only influences the
efficiency of the method, but not its correctness. It remains to specify how to sample from Qf and
how to calculate the importance weights. For sampling from Qf , we propose to use the rejection
sampling method (Section 1.2.2, Bucklew 2004) with the proposal distribution chosen to be PX :
First, X ∼ PX is chosen, which is accepted by probability f1/2(X). This is repeated until a sample
is accepted:
Proposition B.2. A rejection sampling procedure that accepts a random instance X ∼ PX with
probability f1/2(X) produces a sample from Qf .

5Here, we implicitly assume that these measures have a density with respect to a common measure. As it
turns out, this is not a limiting assumption, but this goes beyond the scope of the present article.
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Proof. Let U be uniformly distributed on the [0, 1] interval and independent of X . Clearly, the
probability that a sample produced by rejection sampling falls into a set A ⊂ X is P(X ∈ A|U ≤
f1/2(X)). Now,

P(X ∈ A|U ≤ f1/2(X)) =
P(X ∈ A,U ≤ f1/2(X))

P(U ≤ f1/2(X))
=

∫
A
P(U ≤ f1/2(x))PX(x)

P(U ≤ f1/2(X))

=

∫
A
f1/2(x)PX(x)

P(U ≤ f1/2(X))
.

Since P(X ∈ ·|U ≤ f1/2(X)) is a probability measure on X , it follows that the unconditional
acceptance probability satisfies P(U ≤ f1/2(X)) =

∫
X f

1/2(x)PX(x), thus showing that the
distribution of accepted points is Qf as required.

To increase the robustness of the sampling procedure against errors introduced by f 6= f∗, we
introduce a “hyperparameter” α > 0 so that qf is redefined to be proportional to fα. Note that
α = 1/2 is what our previous result suggests. However, if f is overestimated, a larger value of α
may work better, while if f is underestimated, a smaller value of α may work better.

The pseudocode of the full procedure is given as algorithm 2.

Algorithm 2 AVF-guided risk estimator (AVF estimator)

Input: AVF f , budget T ∈ N and tuning parameter α > 0

Returns: Failure probability estimate P̂
Initialize S ← 0
for t = 1 to T do

repeat
Sample proposal instance Xt ∼ PX
Accept Xt with probability fα(Xt)

until accepting initial condition Xt

Evaluate the agent on Xt and observe Ct = c(Xt, Zt)
S ← S + Ct/f

α(Xt)
end for
Compute normalization constant Z ← 1

m

∑m
i=1 f

α(X ′i) for X ′i ∼ PX , m� T

return P̂ ← ZS/T

C Agent Training Details

C.1 Environments

For the Driving domain, we use the TORCS 3D car racing game (Wymann et al., 2000) with settings
corresponding to the “Fast car, no bots” setting in Mnih et al. (2016). At each step, the agent receives
an 15-dimensional observation vector summarizing its position, velocity, and the local geometry of
the track. The agent receives a reward proportional to its velocity along the center of the track at
its current position, while collisions with a wall terminate the episode and provide a large negative
reward.

Each problem instance is a track shape, parameterized by a 12-dimensional vector encoding the
locations and curvatures of waypoints specifying the track. Problem instances are sampled by
randomly sampling a set of waypoints from a fixed distribution, and rejecting any tracks with
self-intersections.

For the Humanoid domain, we use the Humanoid Stand task from Tassa et al. (2018). At each step,
the agent receives a 67-dimensional observation vector summarizing its joint angles and velocities,
and the locations of various joints in Cartesian coordinates. The agent receives a reward proportional
to its head height. If the head height is below 0.7m, the episode is terminated and the agent receives a
large negative reward.

Each problem instance is defined by an initial standing pose. To define this distribution, we sample
1e5 random trajectories from a separately trained D4PG agent. We sample a random state from these
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trajectories, ignoring the first 10 seconds of each trajectory, as well as any trajectories terminating in
failure, to ensure all problem instances are feasible. Together, we obtain 6e7 problem instances, so it
is unlikely that any problem instance at train or test time has been previously seen.

C.2 Agents

We now describe the agents we used for evaluation on each task. The focus of this work is not on
training agents, and hence we leave the agents fixed for all experiments. However, we did make some
modifications to decrease agent failure probabilities, as we are most interested in whether we can
design effective adversaries when failures are rare, and thus there is not much learning signal to guide
the adversary.

On Driving, we use an asynchronous batched implementation of Advantage Actor-Critic, using a
V-trace correction, following Espeholt et al. (2018). We use Population-Based Training, and evolve
the learning rate and entropy cost weights Jaderberg et al. (2017), with a population size of 5. Each
learner is trained for 1e9 actor steps, which takes 4 hours distributed over 100 CPU workers and a
single GPU learner. Since episodes are at most 3600 steps, this equates to roughly 270e3 episodes
per learner, and 1.3e6 episodes for the entire population. At test time, we take the most likely
predicted action, rather than sampling, as we found it decreased the failure probability by roughly
half. Additionally, we used a hand-crafted form of adversarial training by training on a more difficult
distribution of track shapes, with sharper turns than the original distribution, since this decreased
failure probability roughly 20-fold.

On Humanoid, we use a D4PG agent, using the same hyperparameters as Barth-Maron et al. (2018).
The agent is trained for 4e6 learner steps, which corresponds to between 250e6 and 300e6 actor steps,
which takes 8 hours distributed over 32 CPU workers and a single GPU learner. Since episodes are at
most 1000 steps, this equates to roughly 275e3 episodes. We use different exploration rates on actors,
as in Horgan et al. (2018), with noise drawn from a normal distribution with standard deviation σ
evenly spaced from 0.0 to 0.4. We additionally use demonstrations from the agent described in the
previous section, which was used for defining the initial pose distribution, following Vecerík et al.
(2017). In particular, we use 1000 demonstration trajectories, and use demonstration data for half of
each batch to update both the critic and policy networks. This results in a roughly 4-fold improvement
in the failure rate.

D Experimental Details

D.1 AVF Details

When constructing the training datasets, we ignore the beginning of training during which the agent
fails very frequently. This amounts to using the last 150, 000 episodes of data on Driving and last
200, 000 on Humanoid. To include information about the training iteration of the agent, we simply
include a single real value, the current training iteration divided by the maximum number of training
iterations. Similarly, for noise applied to the policy, we include the amount of noise divided by the
maximum amount of noise. These are all concatenated before applying the MLP. We train both AVF
models to minimize the cross-entropy loss, with the Adam optimizer (Kingma and Ba, 2014), for
20, 000 and 40, 000 iterations on Driving and Humanoid respectively, which requires 4.5 and 50
minutes respectively on a single GPU.

On Driving, the AVF architecture uses a 4-layer MLP with 32 hidden units per layer and a single
output, with a sigmoid activation to convert the output to a probability. On Humanoid, since failures of
the most robust agents are very rare, we use a simplified Differentiable Neural Dictionary architecture
(Pritzel et al., 2017) to more effectively leverage the limited number of positive training examples.
In particular, to classify an input x, the model first retrieves the K = 32 nearest neighbors and
their corresponding labels (xi, yi) from the training set. The final prediction is then a weighted
average (b +

∑
i:yi=1 wi)/(2b +

∑
i wi), where b is a learned pseudocount, which allows the

model to make uncertain predictions when all weights are close to 0. To compute weights wi,
each point is embedded by a 1-layer MLP f into 16 dimensions, and the weight of each neighbor
is computed wi = κ(f(x), f(xi)), where κ is a Gaussian kernel, κ(x, y) = exp(‖x− y‖22 /2).
We tried different hyperparameters for the number of MLP layers on Driving, and the number of
neighbors on Humanoid, and selected based on a held-out test set using data collected during training.
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Sample size n n0/10 Cost n0/10 Speedup n0 Cost 10n0 Cost 10n0 Speedup

Driving 4/23/61 0.18/0.22/0.59 3/5/11 2/3/6 1.1/1.7/2.4
Humanoid 57/173/220 0.16/0.23/0.28 19/33/56 7/11/25 1.8/2.4/3.1

Table 2: Adversary hyperparameter sensitivity analysis. We show the performance of Algorithm
1 for varying values of the sample size parameter n. The middle column shows results for n = n0,
the value we used in our experiments, and we compare to a factor of 10 larger and smaller. Costs
represent expected number of episodes until a failure, and speedups are relative to when n = n0. As
before, each cell shows min, median, and max values across 5 agents. On both domains, applying
greater optimization pressure improves results.

In particular, to match real-world situations, we did not select hyperparameters based on either failure
search or risk estimation experiments.

D.2 Failure Search

We ran the VMC adversary for 5e6 experiments for each agent. The expected cost is simply 1/p,
where p is the fraction of experiments resulting in failures. For the AVF adversary, we ran 2e4
experiments for each agent, since failures are more common, so less experiments are necessary to
estimate the failure probabilities precisely. For the PR adversary, the adversary first selected problem
instances which caused failures on the actor with the least noise, most recent first, followed by the
actor with the second least noise, and so on. We also tried a version which did not account for the
amount of noise and simply ran the most recent failures first, which was slightly worse.

For the failure search experiments on the Humanoid domain, we always evaluate the best version of
each agent according to the AVF model selection procedure from Section 4.3. We chose this because
we are most interested in whether we can design effective adversaries when failures are rare, and
simply choosing the final agent is ineffective, as discussed in Appendix D.4.

We now discuss the sample size parameter n in Algorithm 1. As discussed, using larger values of
n applies more selection pressure in determining which problem instances to run experiments on,
while using smaller values of n draws samples from a larger fraction of X , and thus provides some
robustness to inaccuracies in the learned f . Of course, other more sophisticated approaches may
be much more effective in producing samples from diverse regions of X , but we only try this very
simple approach. For our experiments, we use n = 1000 for Driving and n = 10000 for Humanoid.
We did not perform any hyperparameter selection on n, in order to match the real-world setting where
the experimenter has only a fixed budget of experiments, and wishes to find a single failure. However,
we include additional experiments to study the robustness of the AVF adversary to the choice of n.
These are summarized in Table 2.

We observe that on both domains, applying greater optimization pressure improves results, over the
default choices for n we used. However, relative to the improvements over the VMC adversary, these
differences are small, and the AVF adversary is dramatically faster than the VMC adversary for all
choices of n we tried.

D.3 Risk Estimation Details

In our paper, we showed that the AVF estimator can estimate the failure probability of an agent much
faster than the VMC estimator. In particular, we showed in both the Driving and Humanoid domains
that our estimator requires an order of magnitude less episodes to achieve a 3-approximation at any
given confidence level. In general, we may be interested in a ρ-approximation, that is we might
want the estimates to fall in the range (p/ρ, pρ) where p is the probability of failure that we wish
to measure. One might ask whether our results are sensitive to the choice of ρ. In other words, did
we select ρ = 3 so that our results look good? To address this concern, we include results for lower
and higher choices of ρ. We see that the AVF estimator performs significantly better than the VMC
estimator across choices of ρ.
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Figure 2: This figure shows the reliability of the AVF and VMC estimators for various choices
of r = ρ. As before, the x axis shows the number of evaluation episodes. The y-axis shows the
probability that P̂ does not belong in the interval (p/r, pr). The probability is obtained by running
the evaluation multiple times, and we include error bars of 2 standard errors. Note that the curves
are not smooth especially for the VMC estimator. This is not because of the uncertainty in the plots
but is a property of ρ-estimators when the sample size is small, that is on the order of 1/p. For such
sample sizes, increasing the sample size does not monotonically improve the estimator’s accuracy.
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Figure 3: Model selection: We plot the expected number of episodes until failure, i.e. 1/p where p
is the probability of failure, for the best policy selected by the AVF vs. VMC estimators. The error
bars show the min/max over 5 random seeds, while the solid lines correspond to the averaged failure
probability. The VMC estimator largely maintains a uniform distribution over many of the policies,
whereas the AVF estimator quickly eliminates the worst policies.

D.4 Model Selection

We show the results for VMC and AVF based model selection procedures in Figure 3. We ran each
procedure 5 times, with different random seeds.

Measuring ground truth failure probabilities. In Figure 4, we show the “ground truth” failure
probabilities for each of the 50 model’s robustness. Each bar represents a version of the agent at a
different point in training, starting from step 5e5, and taking a new version every 7e4 learner steps
(so that there are 50 agents in total). Failure probabilities are computed by taking the fraction of
experiments resulting in failures, using 160, 000 experiments per agent. We show robustness (1/p)

11



500K 1M 1.5M 2M 2.5M 3M 3.5M 4M
Agent Training Iteration

0

50K

100K

150K

200K

R
o
b
u
st

n
es

s 
(1

/
p
)

Ground Truth Robustness

Figure 4: We show the robustness for agents taken from different points in training. The failure
probability of each agent is estimated using 160, 000 experiments with VMC. Note that the robustness
does not improve monotonically, and that simply choosing the final agent would not provide a robust
agent.

rather than failure probabilities, so that it is easier to see differences between the most robust models.
Robustness should be interpreted as the expected number of experiments until seeing a failure.

We note that the failure probabilities we report after model selection in Figure 3 are conservative, for
two reasons. First, for the two agents which did not fail in our ground truth measurements, we use
a failure probability of 1/160, 000 rather than 0. Second, because our ground truth measurements
are only noisy measurements of the true failure probability for each agent, it is possible that even an
optimal model selection algorithm would not pick the optimal agent according to our ground truth
measurements. We could run the ground truth measurements for longer, but already, this required
160, 000 ∗ 50 = 8e6 experiments, or 231 CPU-days. Nonetheless, even with these conservative
estimates, the AVF estimator showed significant improvements over using the VMC estimator for
model selection.

Non-monotonicity of robustness over training. Finally, we note that the robustness is not mono-
tonically increasing, and thus simply taking the last agent (or randomly choosing from the last few)
would be a worse model selection strategy than uniform exploration with the AVF estimator. This
differs from the standard setting in deep reinforcement learning, with tightly bounded rewards, where
expected return usually (roughly) monotonically increases over the course of training. As discussed in
the body of the paper, when the agent is optimized using VMC, failures are observed very rarely, and
thus the optimization process does not effectively decrease the failure probability, which is consistent
with the non-monotonicity we observe here.
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